install.packages(c(“ggplot2”, “dplyr”, “ISwR”, “MASS”, “Sleuth3”, “rmarkdown”, “tidyr”))

Introduction Ozone Data

\(\textbf{Objective:}\) L’objective est d’expliquer la variable max03 par rapport a T12 dans le modele lineare et par rapport a dans le modele multiple et faire un comparison avec le deux.

Le 5 premier colonnes de la data frame Ozone
date maxO3 T6 T9 T12 T15 T18 Ne6 Ne9 Ne12 Ne15 Ne18 Vx maxO3v
19940401 56.0 8.6 9.5 6.8 9.1 7.7 6 3 6 7 4 -10.8329 59.6
19940402 39.2 3.6 5.6 9.2 8.4 4.9 3 4 6 7 7 -10.3366 56.0
19940403 36.0 2.7 7.3 6.3 7.0 7.9 6 8 8 8 8 -1.0419 39.2
19940404 41.2 11.8 11.8 11.0 7.0 7.7 8 7 6 7 3 -10.3366 36.0
19940405 27.6 3.7 8.3 11.6 10.7 7.9 6 3 6 6 6 -8.8633 41.2

ou les varaibles sont:

Modèle linear simple \(\mathcal{M}_{1}\) avec la varialble T12

On considére el modèle lineaire simple \(\mathcal{M}_{1}\) avec la variable explicative T12.

\[\begin{equation} (\mathcal{M}_{1}): max03= \beta_{0} + \beta_{1} T12 + \epsilon_{1} \end{equation}\]

Résumé

Plot

Scatter plot

## `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'

Correlation

Ici on etude la correlation entre les deux variables T12 et maxo3, on a que le valuer est \(0.492\) i.e que on peut expliquer la variable maxo3 par la variable T12

## [1] 0.4922408

Summary

## 
## Call:
## lm(formula = maxO3 ~ T12)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -75.675 -14.746  -0.297  17.459  66.312 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  28.2761     2.5242   11.20   <2e-16 ***
## T12           2.6254     0.1257   20.89   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 23.59 on 1364 degrees of freedom
## Multiple R-squared:  0.2423, Adjusted R-squared:  0.2417 
## F-statistic: 436.2 on 1 and 1364 DF,  p-value: < 2.2e-16

Coefficients

## (Intercept)         T12 
##   28.276122    2.625433

Les estimations des coefficients sont \(\beta_0\) et \(\beta_1\) sont respectivement \(\beta_0=28.2761\) et \(\beta_1=2.6254\). L’équation de la regression lineaire est:

\[y=28.2761+2.6254 \,\, T12. \]

Residuals

#Le residuals sont:

residuals_simple <- res_simple$residuals
residuals_simple
##             1             2             3             4             5 
##   9.870933177 -13.230106149  -8.816350297 -15.955885643 -31.131145474 
##             6             7             8             9            10 
## -21.318775390  -8.617736064  -0.730452591  -5.979932928   1.495673346 
##            11            12            13            14            15 
##  -5.843169117 -10.168948611  -5.304326654 -26.429413265  -3.228720381 
##            16            17            18            19            20 
## -15.743515559   9.032437157   3.607696988 -14.942129791 -24.467909285 
##            21            22            23            24            25 
## -39.319468274 -21.758657178 -40.870680820 -38.220507599 -41.369641495 
##            26            27            28            29            30 
## -46.932531242 -52.920854041 -59.197846082 -43.361428713 -37.244554884 
##            31            32            33            34            35 
##  -8.497499640 -18.784783114 -33.296113873 -32.782704463 -48.607444631 
##            36            37            38            39            40 
## -50.869987937 -31.831491916 -29.957271410 -33.608137515 -37.058310736 
##            41            42            43            44            45 
## -13.609523282  -7.870680820  -3.434956335 -17.920854041 -19.897499640 
##            46            47            48            49            50 
## -44.269987937 -30.608137515 -38.118775390 -20.244554884 -41.158657178 
##            51            52            53            54            55 
## -22.819814716 -33.909176841 -31.159350062 -38.821200483 -25.921546925 
##            56            57            58            59            60 
## -15.745594210 -15.395074547 -18.045940652 -11.157964294  -9.708483957 
##            61            62            63            64            65 
##  18.026894087 -14.749751512 -21.833570567 -25.395767431 -17.207444631 
##            66            67            68            69            70 
## -24.745594210 -54.809523282 -40.610216166 -27.821200483 -32.183397346 
##            71            72            73            74            75 
## -25.832877684   2.654405790  -0.997153198   9.177413750  28.364350781 
##            76            77            78            79            80 
##   2.538917729 -20.173105913 -17.061775155  12.301114593   2.901114593 
##            81            82            83            84            85 
## -37.121546925 -56.885822439 -67.060389387 -30.837034986  16.547823395 
##            86            87            88            89            90 
## -45.047326419 -26.358657178 -23.861775155  -9.500964059 -42.672759471 
##            91            92            93            94            95 
## -22.536688544 -16.212987701  -4.122932692 -13.425357785 -62.060389387 
##            96            97            98            99           100 
## -37.334609893 -47.309176841 -53.783397346 -54.408830399 -43.810216166 
##           101           102           103           104           105 
## -23.562814480  15.011059584  34.010366700 -36.672066588 -30.048712187 
##           106           107           108           109           110 
## -56.286515323   9.736839078 -22.125011344 -31.086515323 -37.934609893 
##           111           112           113           114           115 
##  -5.973798797 -11.487208207 -29.098885407   7.699035941   9.211059584 
##           116           117           118           119           120 
## -46.361428713 -59.224664902 -36.887901091 -59.109869724 -47.824664902 
##           121           122           123           124           125 
## -46.112641259 -75.674838123 -66.661082271 -56.386168881 -39.276916774 
##           126           127           128           129           130 
## -65.026050669 -70.211601934 -67.374491681 -55.487901091 -26.725704227 
##           131           132           133           134           135 
## -43.987554649 -59.810216166 -56.097499640 -46.947672861 -42.522239809 
##           136           137           138           139           140 
## -33.272759471 -33.474145239 -35.499578291 -55.233570567 -51.610216166 
##           141           142           143           144           145 
## -67.173105913 -52.922932692 -64.074838123 -49.500271175 -62.709869724 
##           146           147           148           149           150 
## -59.696806756 -66.910562608 -62.810216166 -65.097499640 -61.146979977 
##           151           152           153           154           155 
## -59.534609893 -39.311255492 -55.472066588 -46.071373704 -40.947672861 
##           156           157           158           159           160 
## -43.734609893 -56.971720146 -47.022586250 -48.070680820 -30.334609893 
##           161           162           163           164           165 
## -35.444554884 -57.021893367 -58.272066588 -55.921546925 -51.058310736 
##           166           167           168           169           170 
## -45.445247768 -40.619814716 -44.507098189 -50.120161157 -44.506405306 
##           171           172           173           174           175 
## -57.383397346 -46.845940652 -41.708483957 -29.808830399 -49.071373704 
##           176           177           178           179           180 
## -49.507791073 -46.371027262 -24.883743788 -15.594381663  -8.307098189 
##           181           182           183           184           185 
## -10.583397346  -7.406058864  -4.707098189  -7.956578527 -13.794381663 
##           186           187           188           189           190 
##  13.567122316  16.231051389  27.305271895  17.691516043  29.066082991 
##           191           192           193           194           195 
##   7.805618337   1.305271895  29.817988421  29.256484441  11.818681305 
##           196           197           198           199           200 
##  11.831051389  14.645500125   7.144460799  14.393248252  20.908043430 
##           201           202           203           204           205 
##  20.406311220  14.969200968  22.469547409  -0.668602169   4.431744273 
##           206           207           208           209           210 
##  -4.368948611  13.193248252  15.430358505  24.553366465  25.389090950 
##           211           212           213           214           215 
##  22.738224845  19.687358741  25.749209162  43.074295773  58.624815436 
##           216           217           218           219           220 
##  14.478453075   4.642035706  12.366429433  -4.469295053  11.707350546 
##           221           222           223           224           225 
##  15.268854526  20.305271895  10.067468758 -17.243862000   6.554752232 
##           226           227           228           229           230 
##  16.543075032   5.630358505   5.543075032  11.016602654  13.415216886 
##           231           232           233           234           235 
##   3.138917729  -8.283050905 -20.197153198 -14.709176841 -24.785475998 
##           236           237           238           239           240 
## -20.260389387  -4.371027262  -1.482358021   5.729319180  -6.120854041 
##           241           242           243           244           245 
## -12.146287093 -21.195074547  -5.083743788   1.129319180  -1.272066588 
##           246           247           248           249           250 
## -29.283743788   5.079145959   2.404232569  -6.745594210 -24.483050905 
##           251           252           253           254           255 
##  -3.582704463  -7.132531242   8.879145959 -11.246633535 -29.860389387 
##           256           257           258           259           260 
## -23.308483957 -39.971027262 -18.385475998 -26.023279134 -32.261082271 
##           261           262           263           264           265 
##  -6.985475998   2.128626296  -9.984783114   6.251634255  -1.688593974 
##           266           267           268           269           270 
##   9.323776110  13.248169837  23.984933648  25.110020258  28.773256447 
##           271           272           273           274           275 
##  -1.873452355   5.715563328  -5.022586250 -27.684436672 -31.034956335 
##           276           277           278           279           280 
## -16.274145239  31.161579247  15.472217122   4.362965014 -17.397846082 
##           281           282           283           284           285 
## -21.461775155 -17.023279134 -29.586168881  -8.410909050 -23.485822439 
##           286           287           288           289           290 
## -33.223279134 -24.049405070   4.512098909   8.222043901 -11.474145239 
##           291           292           293           294           295 
## -13.860389387  15.888744508  15.149209162  18.335453310   3.538224845 
##           296           297           298           299           300 
## -36.197846082 -30.285822439  -3.588247533   5.723083226  32.811059584 
##           301           302           303           304           305 
##  28.510020258  27.823429668  17.474988656  16.526547645  -4.447326419 
##           306           307           308           309           310 
##  -6.047326419  23.988398066  44.312098909  35.785626531  26.102500360 
##           311           312           313           314           315 
## -16.261082271   1.776720866  19.663311456  31.774642215  28.236492636 
##           316           317           318           319           320 
##  23.811752467  49.811059584  58.561579247  23.086665857  11.712098909 
##           321           322           323           324           325 
##   2.738917729 -21.186168881 -17.761428713  -2.135995660 -15.386168881 
##           326           327           328           329           330 
## -15.384783114 -18.797846082   2.778106633 -21.497499640 -20.409523282 
##           331           332           333           334           335 
## -16.460389387 -10.197153198 -20.422586250 -11.959350062  -9.421200483 
##           336           337           338           339           340 
## -10.896806756  -2.560042945 -16.760042945 -19.159350062  -2.259696503 
##           341           342           343           344           345 
## -20.384090230  -4.408830399 -18.382011579 -24.708483957   2.028972738 
##           346           347           348           349           350 
##   4.390476718  -5.059696503  13.115563328  -2.758657178  -3.721546925 
##           351           352           353           354           355 
##  -2.108483957 -22.333917009  -0.069987937 -12.545594210 -21.608137515 
##           356           357           358           359           360 
##  -9.620507599 -20.157964294 -23.445247768 -13.019814716  23.820067072 
##           361           362           363           364           365 
##  30.583649703  34.683303261  39.956830883  11.307350546   2.145153683 
##           366           367           368           369           370 
##  14.881917494  22.568508084  18.817295537  15.880531726  15.180185284 
##           371           372           373           374           375 
##   4.528626296 -11.881665137  26.756138000  -1.595767431  28.690823159 
##           376           377           378           379           380 
##  13.742382148   0.017295537  12.253712907  17.803539686  12.714870444 
##           381           382           383           384           385 
##   0.143075032   6.980878168  15.780185284  22.518334863  16.629665622 
##           386           387           388           389           390 
##  30.827586970  22.828279854  21.942382148   6.679838843  26.481917494 
##           391           392           393           394           395 
##  16.593248252  13.107350546  24.431051389  38.992555369  29.982956819 
##           396           397           398           399           400 
##   7.417988421  19.219374189  23.180878168  18.268854526  13.393941136 
##           401           402           403           404           405 
##  32.730704947  29.117641979  18.530704947   8.330704947   8.532783598 
##           406           407           408           409           410 
## -11.592995896   0.404232569  23.855791558  18.292901811  22.705271895 
##           411           412           413           414           415 
##   3.743075032 -22.120854041 -16.157964294  -0.919468274  -0.507098189 
##           416           417           418           419           420 
##   2.167122316  -3.720854041   7.977413750  15.012445351 -14.283743788 
##           421           422           423           424           425 
##  13.628972738  12.229665622  12.828279854   4.226894087  40.362272130 
##           426           427           428           429           430 
##  30.460539921  21.385626531  33.243421473   2.339610613  -6.298192524 
##           431           432           433           434           435 
## -30.498885407   1.615909770  33.389090950  22.276374424  34.700421709 
##           436           437           438           439           440 
##  25.799382383  24.524468994  26.899728825  14.112098909 -19.597846082 
##           441           442           443           444           445 
##  21.366429433  20.828279854  33.990476718  15.615216886  10.614524002 
##           446           447           448           449           450 
## -10.571027262 -40.560042945 -12.648019303  -3.796460314 -18.659003620 
##           451           452           453           454           455 
##  -5.146287093 -22.333917009 -39.896806756 -18.410216166 -26.396460314 
##           456           457           458           459           460 
## -18.646633535  -0.883743788 -17.734609893 -22.684436672 -11.297499640 
##           461           462           463           464           465 
##  -0.958657178 -22.309176841 -49.810216166 -31.723625576   4.063311456 
##           466           467           468           469           470 
##  13.000768151  18.125161877  20.112098909  27.299728825  46.461232805 
##           471           472           473           474           475 
##  32.747823395  21.584933648  22.050248488 -17.298192524  10.738224845 
##           476           477           478           479           480 
##  32.575335098 -19.885822439 -41.673452355 -26.211601934 -16.610216166 
##           481           482           483           484           485 
## -27.010216166 -15.785475998 -17.609523282  16.926547645  33.412445351 
##           486           487           488           489           490 
##   9.699728825  -7.385475998  -8.234956335  -3.724318460 -29.371720146 
##           491           492           493           494           495 
## -19.285129556 -17.259696503  -4.309869724  19.976720866  16.363657898 
##           496           497           498           499           500 
##  24.302500360  18.912098909  28.473602889  37.011059584  19.960193479 
##           501           502           503           504           505 
##   7.039264171 -20.448019303 -17.123625576 -24.460389387 -18.048019303 
##           506           507           508           509           510 
##  -2.109869724 -20.372413030 -15.921546925  12.128626296  -2.896806756 
##           511           512           513           514           515 
## -11.521546925  -7.697499640   7.802846802  12.327240529  20.177413750 
##           516           517           518           519           520 
##  19.475681540  12.776720866  19.438571287  18.289437392  18.640649938 
##           521           522           523           524           525 
##   0.378106633 -16.496113873  -2.971720146  -7.221200483  -5.845940652 
##           526           527           528           529           530 
##   2.215909770   6.977413750  11.052327139  15.014524002  15.128626296 
##           531           532           533           534           535 
## -20.219814716 -23.768948611  14.191169601   7.167815200  -9.133917009 
##           536           537           538           539           540 
##   4.053020023   4.378799517 -28.508483957 -16.934609893 -13.634263451 
##           541           542           543           544           545 
## -27.647326419 -13.958657178  16.777413750  30.814524002  47.140303497 
##           546           547           548           549           550 
##  31.031051389  26.855791558  19.729319180  25.204232569  21.330704947 
##           551           552           553           554           555 
##  24.242728590  38.842035706  30.218681305  46.906657662  38.543767915 
##           556           557           558           559           560 
##  40.217988421  27.817295537   7.328626296   0.643421473  -4.745594210 
##           561           562           563           564           565 
##  -3.520161157 -11.508483957   0.242035706   6.927933412  -6.084436672 
##           566           567           568           569           570 
##  -8.410909050  -3.410216166 -19.724318460 -25.647326419 -18.384090230 
##           571           572           573           574           575 
## -13.735302777   1.077760191  -1.483743788  13.114870444  23.316256212 
##           576           577           578           579           580 
## -10.821893367 -20.459696503 -17.509869724 -10.021893367 -11.660389387 
##           581           582           583           584           585 
##  -8.733224125  -9.795074547  -7.632184800  -7.032877684   5.954752232 
##           586           587           588           589           590 
##  -4.546287093   8.792555369 -15.046633535  -4.694728105   3.491516043 
##           591           592           593           594           595 
##  12.665390107  15.264697223  -5.986861765  -0.337381428  -4.511948376 
##           596           597           598           599           600 
##  11.013831119   6.464004340 -16.210909050 -14.486515323 -12.459696503 
##           601           602           603           604           605 
## -24.373798797 -14.960042945 -13.197153198  -1.372413030  11.064004340 
##           606           607           608           609           610 
##   7.976027982   6.788398066  11.874988656  37.224815436  32.200768151 
##           611           612           613           614           615 
## -43.472759471 -49.261082271 -13.861082271  -2.924318460   9.161579247 
##           616           617           618           619           620 
##  -8.310562608 -15.885129556 -10.122932692 -47.848019303 -11.938074312 
##           621           622           623           624           625 
## -17.986168881 -39.123625576  -5.986861765  -8.949058628  15.962272130 
##           626           627           628           629           630 
##  17.123776110  32.085280090   9.889437392  35.787705183 -10.437034986 
##           631           632           633           634           635 
##   4.749902046  31.299035941  15.773949331   4.189783834  13.825508319 
##           636           637           638           639           640 
##  14.837185520   8.336146194  -9.861775155  24.937531962  -1.486515323 
##           641           642           643           644           645 
##  -3.999924733 -17.609523282  -8.547672861 -18.421200483 -12.783397346 
##           646           647           648           649           650 
## -26.747672861 -36.772413030 -19.373798797 -17.534609893 -22.122932692 
##           651           652           653           654           655 
## -21.810909050 -21.171027262 -20.109176841 -10.209523282 -17.684436672 
##           656           657           658           659           660 
## -17.159350062 -14.546287093  -0.660389387   3.839264171 -14.733917009 
##           661           662           663           664           665 
##  -9.783397346  -1.271373704   0.427586970   9.476374424  22.013138235 
##           666           667           668           669           670 
##   9.086665857  24.848862720  23.637878404  17.676374424  24.251634255 
##           671           672           673           674           675 
##  37.963657898  28.738224845  28.626201203  32.688744508  52.976720866 
##           676           677           678           679           680 
##  53.053020023  44.525161877  29.725854761  21.892901811  21.743075032 
##           681           682           683           684           685 
##  26.593248252  23.842728590  28.305964779  41.833130040  16.558909534 
##           686           687           688           689           690 
##  22.857870209  39.396019787  36.857870209  30.132783598  27.045500125 
##           691           692           693           694           695 
##  37.719720630  34.431744273  31.268161642   8.279145959  -9.959350062 
##           696           697           698           699           700 
##  11.218681305  20.642728590  32.655791558  27.281224610  21.617988421 
##           701           702           703           704           705 
##  18.255098674  17.780878168  26.844114357  44.193248252  26.767122316 
##           706           707           708           709           710 
##   8.380185284  30.516256212  24.638571287  26.140303497  17.988398066 
##           711           712           713           714           715 
##  25.262618572  21.225508319  15.150594930  35.802153918  38.575335098 
##           716           717           718           719           720 
##  52.063311456  52.301114593  22.550594930  41.900421709  57.138917729 
##           721           722           723           724           725 
##  27.626201203  23.366429433  30.940996380  19.891516043   6.578799517 
##           726           727           728           729           730 
##   4.815909770   9.979492401  11.266082991  26.905271895  12.091516043 
##           731           732           733           734           735 
##  11.666082991  -6.732531242  11.228279854  18.028279854  17.464697223 
##           736           737           738           739           740 
##  -3.285129556  16.114870444   6.965736549   2.165736549 -18.834956335 
##           741           742           743           744           745 
##  -7.384090230   6.681224610  -0.782704463   0.004925453  -3.496113873 
##           746           747           748           749           750 
##  18.142382148   8.278453075  24.265390107   7.464697223  15.249555604 
##           751           752           753           754           755 
##  37.072217122  25.227586970   2.714870444   7.089437392  -0.786168881 
##           756           757           758           759           760 
##  -8.972413030 -10.797153198  -4.745594210  -8.971720146 -15.296113873 
##           761           762           763           764           765 
## -39.534609893   3.540303497  -3.483050905  14.391169601   4.490823159 
##           766           767           768           769           770 
## -14.571027262 -29.845940652   4.253712907  -4.296806756 -21.496806756 
##           771           772           773           774           775 
## -12.621893367  -5.197846082 -47.197846082 -12.496806756 -11.221893367 
##           776           777           778           779           780 
## -16.958657178 -29.597153198  -5.672759471 -15.734609893  -5.199924733 
##           781           782           783           784           785 
## -19.799231849  -5.172413030  -8.785475998 -19.546287093  -4.472759471 
##           786           787           788           789           790 
##  21.864004340  40.815216886  -9.021893367 -24.171027262 -17.584090230 
##           791           792           793           794           795 
## -25.109869724 -23.584783114 -10.146979977  -4.522932692   0.589090950 
##           796           797           798           799           800 
##  29.359500595 -22.175184564 -11.098885407  37.402153918 -12.361428713 
##           801           802           803           804           805 
##   9.238571287 -13.723625576 -15.685822439  21.753366465  -8.210909050 
##           806           807           808           809           810 
## -26.297499640 -39.648019303 -16.722932692 -14.472759471  10.402153918 
##           811           812           813           814           815 
##  17.727933412  22.653020023  19.452327139  27.138917729  -0.808830399 
##           816           817           818           819           820 
##  -9.210909050 -10.586168881 -13.323625576 -20.861082271  -3.696113873 
##           821           822           823           824           825 
##   2.180185284  17.005618337  20.667468758  -0.169641495 -12.984090230 
##           826           827           828           829           830 
##  -1.459003620  -8.484436672   5.639264171   4.776720866  -3.586168881 
##           831           832           833           834           835 
##  12.764350781  10.664697223  28.589090950   6.865390107 -12.220507599 
##           836           837           838           839           840 
##  -4.847326419  -5.109176841  -8.946287093   1.092208927  10.879838843 
##           841           842           843           844           845 
##  16.703886127  20.855098674  22.566429433  -1.933224125   6.540996380 
##           846           847           848           849           850 
##  14.754752232  28.143075032  25.592555369 -22.119468274  31.906657662 
##           851           852           853           854           855 
##  38.493594694  23.555445116  33.257177325  36.108736314  35.407696988 
##           856           857           858           859           860 
##  36.957523767  36.718334863  39.194634020  33.657870209  33.780878168 
##           861           862           863           864           865 
##  36.092901811  34.117641979  34.807004104  30.479838843   7.481224610 
##           866           867           868           869           870 
##  25.242035706  23.103193244  23.428279854  14.153366465  17.678453075 
##           871           872           873           874           875 
##  25.514177561  22.413831119  19.450941372  20.553366465  34.004232569 
##           876           877           878           879           880 
##  12.453020023  -0.859003620  16.340996380  21.789090950  14.066082991 
##           881           882           883           884           885 
##  18.567815200  11.154752232  18.291516043  13.929319180  17.178799517 
##           886           887           888           889           890 
##  29.415909770  24.429665622   9.266775875  23.354059348   7.916256212 
##           891           892           893           894           895 
##  -0.720854041  19.579492401  11.964350781  19.750594930   5.401461034 
##           896           897           898           899           900 
##  29.700421709   5.739610613   6.176720866  -0.812294817  15.954059348 
##           901           902           903           904           905 
##   7.254405790   1.292208927  15.242728590   6.228972738   5.442728590 
##           906           907           908           909           910 
##  12.642035706   5.841342822  25.803539686  17.490823159  27.602846802 
##           911           912           913           914           915 
##  25.678453075  40.102500360  48.488744508  60.075681540  26.889437392 
##           916           917           918           919           920 
##  23.827586970  24.802153918  -5.971720146   4.579492401   4.666082991 
##           921           922           923           924           925 
##  -4.284436672  -7.295420989 -24.223279134  -6.683743788 -33.748365745 
##           926           927           928           929           930 
##   2.348516279 -15.347672861 -15.946979977  -7.946979977 -12.097499640 
##           931           932           933           934           935 
## -26.496806756  12.750594930  22.250248488  22.712791793  30.137531962 
##           936           937           938           939           940 
##  -6.248019303 -11.810909050  -3.872066588  11.262618572  28.549209162 
##           941           942           943           944           945 
## -21.648019303 -23.098192524  -7.946979977 -14.645940652  -0.785475998 
##           946           947           948           949           950 
##  15.650248488  12.348516279  12.272910005  37.624815436  42.762272130 
##           951           952           953           954           955 
##  45.812445351  31.136839078  -0.375184564  -5.561428713 -38.597846082 
##           956           957           958           959           960 
## -29.349058628 -19.098192524 -10.599231849  18.241342822 -11.834956335 
##           961           962           963           964           965 
##  -6.259696503  -0.797153198  -1.910562608 -21.348365745 -28.085822439 
##           966           967           968           969           970 
## -28.797153198 -22.847326419 -14.371027262 -11.072759471  -9.622586250 
##           971           972           973           974           975 
##  -5.822586250  17.650941372  15.125854761 -21.735995660  -1.212987701 
##           976           977           978           979           980 
##  10.038571287 -16.761428713 -12.410909050  -4.498885407  35.413138235 
##           981           982           983           984           985 
##   4.950594930 -14.498192524  -1.160735829  13.724468994  11.700421709 
##           986           987           988           989           990 
##  42.925161877  38.524468994  36.150594930  16.738917729  -5.098885407 
##           991           992           993           994           995 
## -27.072066588  11.436492636  24.523083226 -12.009523282 -11.696806756 
##           996           997           998           999          1000 
##  -9.645247768  -0.334609893  -7.246633535 -11.283743788 -13.845940652 
##          1001          1002          1003          1004          1005 
##  -9.521546925 -22.759350062 -24.420507599 -26.998538966 -14.560042945 
##          1006          1007          1008          1009          1010 
## -19.360735829  -2.333917009  -2.434263451   2.091516043 -11.083743788 
##          1011          1012          1013          1014          1015 
##  -8.921546925  -9.471373704  21.732090715  -2.055539201 -10.657617852 
##          1016          1017          1018          1019          1020 
##  11.457870209  17.496366229  23.782263936   2.543075032   6.566429433 
##          1021          1022          1023          1024          1025 
##  12.905964779  -0.893342338  14.469547409  11.882610377   0.755445116 
##          1026          1027          1028          1029          1030 
##   5.508043430  11.245500125  19.982956819   1.068161642  -2.731145474 
##          1031          1032          1033          1034          1035 
##  -2.719468274  -9.657617852  -1.908483957   0.817295537   8.492901811 
##          1036          1037          1038          1039          1040 
##  -1.731145474  -4.294728105  -0.344901326  -7.456924968   5.917641979 
##          1041          1042          1043          1044          1045 
##   0.242035706  -3.946979977  -2.309869724 -12.645940652  -9.132531242 
##          1046          1047          1048          1049          1050 
## -16.283050905   4.489437392   4.176720866  -4.734609893  -5.846633535 
##          1051          1052          1053          1054          1055 
##  -4.159350062   0.678453075  -7.271373704   4.454405790  18.728626296 
##          1056          1057          1058          1059          1060 
##   3.076374424  16.462618572   9.064697223  16.191862485  17.442728590 
##          1061          1062          1063          1064          1065 
##  12.130012063  11.454405790   9.442728590   3.504579011   4.678453075 
##          1066          1067          1068          1069          1070 
## -14.333224125   7.566429433   9.017988421  10.130012063  10.079838843 
##          1071          1072          1073          1074          1075 
##   7.242035706  -8.920161157  -4.333224125  -8.271373704   2.327240529 
##          1076          1077          1078          1079          1080 
##  -6.159350062   3.840649938 -10.333224125  -4.483743788   7.890823159 
##          1081          1082          1083          1084          1085 
##  17.813831119   6.153366465  -2.634263451 -22.047326419 -22.510562608 
##          1086          1087          1088          1089          1090 
## -30.360042945   6.250248488   7.524468994  11.061232805  28.424122552 
##          1091          1092          1093          1094          1095 
##   9.551287813  -8.985475998  -3.159350062 -14.483743788  -3.171027262 
##          1096          1097          1098          1099          1100 
##   6.253712907  20.226894087  23.338917729  36.450941372  10.813831119 
##          1101          1102          1103          1104          1105 
##   7.701807476 -16.286515323 -12.248019303 -10.109176841 -14.935302777 
##          1106          1107          1108          1109          1110 
##  -2.360042945  -1.711255492   5.041342822  -6.109176841 -24.059003620 
##          1111          1112          1113          1114          1115 
##  -2.120854041  -9.171027262 -15.997153198 -15.259696503  -8.584090230 
##          1116          1117          1118          1119          1120 
##  -3.533917009   4.103193244   7.226894087  28.964350781  34.450941372 
##          1121          1122          1123          1124          1125 
##  33.350594930  35.200075267  14.037878404  14.613138235  -3.309869724 
##          1126          1127          1128          1129          1130 
##  -8.722932692 -13.572413030   8.415909770 -21.197846082 -19.784783114 
##          1131          1132          1133          1134          1135 
## -10.460389387   8.937531962  -1.761428713 -19.711255492  -9.572413030 
##          1136          1137          1138          1139          1140 
##  -2.622586250  -9.410216166 -22.722932692 -24.811601934 -21.085822439 
##          1141          1142          1143          1144          1145 
##  -1.950444396 -29.885129556   3.775335098   2.825508319   0.338917729 
##          1146          1147          1148          1149          1150 
## -25.186168881 -13.398538966 -29.348365745  -7.873452355 -29.097499640 
##          1151          1152          1153          1154          1155 
## -20.309869724 -15.020507599 -10.784783114  -1.035649219  21.099728825 
##          1156          1157          1158          1159          1160 
##  38.736839078  15.810366700  21.740303497 -19.248019303 -13.047326419 
##          1161          1162          1163          1164          1165 
## -14.823279134   1.288744508  21.188398066  -3.097499640 -14.097499640 
##          1166          1167          1168          1169          1170 
##   1.628279854  -1.259696503  16.226894087 -20.460389387  -8.097499640 
##          1171          1172          1173          1174          1175 
## -36.448712187 -13.274838123  -8.100964059  14.385626531   7.890823159 
##          1176          1177          1178          1179          1180 
## -13.896806756 -18.923625576 -19.348365745 -14.147672861  -9.371720146 
##          1181          1182          1183          1184          1185 
## -12.946979977  -9.507098189  -7.707791073 -12.696113873 -25.711255492 
##          1186          1187          1188          1189          1190 
##   4.350594930  -4.109176841  -9.834956335 -13.248019303 -27.684436672 
##          1191          1192          1193          1194          1195 
##  -6.433570567  -5.109176841  10.242035706   4.991169601  19.130012063 
##          1196          1197          1198          1199          1200 
##  30.631744273  16.056484441  15.330704947  23.168508084  26.380878168 
##          1201          1202          1203          1204          1205 
##   7.917641979  32.944460799  27.118334863  21.743767915  22.531397831 
##          1206          1207          1208          1209          1210 
##  43.419374189  12.492901811  15.218681305  29.531397831  34.207004104 
##          1211          1212          1213          1214          1215 
##  41.457870209  39.508043430  38.681917494  29.994634020  30.855791558 
##          1216          1217          1218          1219          1220 
##  27.342382148  18.180185284  19.593248252  19.867468758  31.118334863 
##          1221          1222          1223          1224          1225 
##  33.894287578  34.631744273   3.543075032   5.369200968  26.257177325 
##          1226          1227          1228          1229          1230 
##  27.956138000  28.994634020   8.130012063  26.079838843  -9.020507599 
##          1231          1232          1233          1234          1235 
## -10.696113873  23.964350781  42.462618572  21.616602654  14.265390107 
##          1236          1237          1238          1239          1240 
##  20.604925453  26.504579011  19.755445116   9.454405790  17.191862485 
##          1241          1242          1243          1244          1245 
##  20.477760191  30.701807476  21.651634255  33.864004340  50.138224845 
##          1246          1247          1248          1249          1250 
##  45.539610613  28.427586970  -1.309869724   7.099728825 -23.460389387 
##          1251          1252          1253          1254          1255 
## -13.911948376   5.578106633  10.153366465   5.415909770  17.516256212 
##          1256          1257          1258          1259          1260 
##  34.002846802  11.902500360  -0.259696503   9.767122316   5.492901811 
##          1261          1262          1263          1264          1265 
##  24.516256212   4.778799517  21.265390107  20.226894087  22.053020023 
##          1266          1267          1268          1269          1270 
##   8.427586970  -7.734609893  -6.059003620   9.041342822   9.578106633 
##          1271          1272          1273          1274          1275 
##  52.138224845  -6.085822439  29.188398066  42.636492636  26.562965014 
##          1276          1277          1278          1279          1280 
##  31.872217122  18.026201203  -5.398538966 -30.085822439 -13.174491681 
##          1281          1282          1283          1284          1285 
## -22.711255492 -17.873452355   3.161579247  31.698343058   1.365736549 
##          1286          1287          1288          1289          1290 
##  16.940996380   6.501114593  36.940996380 -11.935302777   1.964350781 
##          1291          1292          1293          1294          1295 
##  -5.622586250 -12.410216166 -17.696113873 -21.344901326 -10.109176841 
##          1296          1297          1298          1299          1300 
## -11.421893367   2.165043665 -19.097499640  -0.232877684  13.578106633 
##          1301          1302          1303          1304          1305 
##   6.427586970 -18.985475998 -13.773105913  -6.348365745  -4.348365745 
##          1306          1307          1308          1309          1310 
##  50.099728825  51.999382383  56.424122552  48.261925688  54.011059584 
##          1311          1312          1313          1314          1315 
##  47.648169837 -13.325011344  20.273602889  25.238571287   0.940996380 
##          1316          1317          1318          1319          1320 
## -19.360042945 -23.371720146 -23.661082271 -12.985475998 -24.460389387 
##          1321          1322          1323          1324          1325 
##  -3.171027262  -3.784783114   9.864004340  16.562965014  -7.097499640 
##          1326          1327          1328          1329          1330 
##   9.485972973  18.501114593 -16.672759471  -8.197846082  19.613138235 
##          1331          1332          1333          1334          1335 
##  18.099728825  28.161579247  66.312098909  42.771870680  11.601461034 
##          1336          1337          1338          1339          1340 
##  16.674988656  19.663311456  25.991169601  -1.109176841 -22.572413030 
##          1341          1342          1343          1344          1345 
##  -3.309869724 -11.873452355 -17.383397346  -7.684436672 -11.896806756 
##          1346          1347          1348          1349          1350 
## -17.321546925 -14.885129556 -17.259696503  -8.560735829  -3.371720146 
##          1351          1352          1353          1354          1355 
##  -4.271373704  -5.746287093  -3.746287093  -5.032184800 -23.819814716 
##          1356          1357          1358          1359          1360 
##  -6.070680820  -4.533917009  16.790476718  18.002846802  17.516256212 
##          1361          1362          1363          1364          1365 
##   1.253712907   9.253712907  -5.885129556  10.338917729   2.740303497 
##          1366 
##  -7.109176841

Fitted Values

#Le fitted values sont:

fitted_simple <- res_simple$fitted
fitted_simple
##         1         2         3         4         5         6         7         8 
##  46.12907  52.43011  44.81635  57.15589  58.73115  59.51878  53.21774  54.53045 
##         9        10        11        12        13        14        15        16 
##  51.37993  47.70433  55.84317  60.56895  47.70433  48.22941  44.02872  57.94352 
##        17        18        19        20        21        22        23        24 
##  52.16756  50.59230  49.54213  54.26791  63.71947  73.95866  71.07068  70.02051 
##        25        26        27        28        29        30        31        32 
##  64.76964  67.13253  72.12085  84.19785  90.76143  64.24455  82.09750  80.78478 
##        33        34        35        36        37        38        39        40 
##  73.69611  68.18270  66.60744  66.86999  60.83149  65.55727  70.80814  71.85831 
##        41        42        43        44        45        46        47        48 
##  79.20952  71.07068  81.83496  72.12085  82.09750  66.86999  70.80814  59.51878 
##        49        50        51        52        53        54        55        56 
##  64.24455  73.95866  65.81981  77.10918  78.15935  74.22120  76.32155  70.54559 
##        57        58        59        60        61        62        63        64 
##  67.39507  72.64594  69.75796  72.90848  85.77311  95.74975  73.43357  71.59577 
##        65        66        67        68        69        70        71        72 
##  66.60744  70.54559  79.20952  83.41022  74.22120  72.38340  69.23288  70.54559 
##        73        74        75        76        77        78        79        80 
##  79.99715  82.62259  86.03565  88.66108  85.77311  92.86178  90.49889  90.49889 
##        81        82        83        84        85        86        87        88 
##  76.32155  87.08582  84.46039  94.43703 110.45218  81.04733  73.95866  92.86178 
##        89        90        91        92        93        94        95        96 
## 103.10096  83.67276  92.33669 100.21299  84.72293  99.42536  84.46039  79.73461 
##        97        98        99       100       101       102       103       104 
##  77.10918  72.38340  75.00883  83.41022  99.16281 105.98894 110.18963  79.47207 
##       105       106       107       108       109       110       111       112 
##  89.44871  91.28652 101.26316  97.32501  91.28652  79.73461  89.97380  95.48721 
##       113       114       115       116       117       118       119       120 
##  90.49889 103.10096 105.98894  90.76143  95.22466  99.68790  81.30987  95.22466 
##       121       122       123       124       125       126       127       128 
##  98.11264  96.27484  88.66108  89.18617 108.87692 103.62605  91.81160  94.17449 
##       129       130       131       132       133       134       135       136 
##  99.68790 101.52570  97.58755  83.41022  82.09750  83.14767  80.52224  83.67276 
##       137       138       139       140       141       142       143       144 
##  92.07415  94.69958  73.43357  83.41022  85.77311  84.72293  96.27484  98.90027 
##       145       146       147       148       149       150       151       152 
##  81.30987  77.89681  85.51056  83.41022  82.09750  78.94698  79.73461  89.71126 
##       153       154       155       156       157       158       159       160 
##  79.47207  75.27137  83.14767  79.73461  77.37172  82.62259  71.07068  79.73461 
##       161       162       163       164       165       166       167       168 
##  64.24455  78.42189  79.47207  76.32155  71.85831  68.44525  65.81981  64.50710 
##       169       170       171       172       173       174       175       176 
##  67.92016  60.30641  72.38340  72.64594  72.90848  75.00883  75.27137  68.70779 
##       177       178       179       180       181       182       183       184 
##  73.17103  74.48374  63.19438  64.50710  72.38340  58.20606  64.50710  61.35658 
##       185       186       187       188       189       190       191       192 
##  63.19438  69.23288  60.56895  65.29473  72.90848  75.53392  63.19438  65.29473 
##       193       194       195       196       197       198       199       200 
##  63.98201  57.94352  59.78132  60.56895  48.75450  55.05554  62.40675  48.49196 
##       201       202       203       204       205       206       207       208 
##  58.99369  56.63080  54.53045  58.46860  56.36826  60.56895  62.40675  64.76964 
##       209       210       211       212       213       214       215       216 
##  76.84663  87.61091  92.86178  98.11264 102.05079 101.52570  98.37518  76.32155 
##       217       218       219       220       221       222       223       224 
##  69.75796  73.43357  62.66930  52.69265  58.73115  65.29473  67.13253  60.04386 
##       225       226       227       228       229       230       231       232 
##  68.44525  63.45692  64.76964  63.45692  72.38340  80.78478  88.66108  70.28305 
##       233       234       235       236       237       238       239       240 
##  79.99715  77.10918  84.98548  84.46039  73.17103  66.08236  71.07068  72.12085 
##       241       242       243       244       245       246       247       248 
##  74.74629  67.39507  74.48374  71.07068  79.47207  74.48374  72.12085  71.59577 
##       249       250       251       252       253       254       255       256 
##  70.54559  70.28305  68.18270  67.13253  72.12085  76.84663  84.46039  72.90848 
##       257       258       259       260       261       262       263       264 
##  73.17103  84.98548  86.82328  88.66108  84.98548  75.27137  80.78478  87.34837 
##       265       266       267       268       269       270       271       272 
## 103.88859 104.67622 108.35183 112.81507 112.28998 107.82674  87.87345  78.68444 
##       273       274       275       276       277       278       279       280 
##  82.62259  78.68444  81.83496  92.07415 102.83842 114.12778  94.43703  84.19785 
##       281       282       283       284       285       286       287       288 
##  92.86178  86.82328  89.18617  87.61091  87.08582  86.82328  93.64941  99.68790 
##       289       290       291       292       293       294       295       296 
## 115.17796  92.07415  84.46039  89.71126 102.05079 109.66455  92.86178  84.19785 
##       297       298       299       300       301       302       303       304 
##  87.08582 101.78825 108.87692 105.98894 112.28998 106.77657  97.32501  87.87345 
##       305       306       307       308       309       310       311       312 
##  81.04733  81.04733  91.81160  99.68790 108.61437  82.09750  88.66108  86.82328 
##       313       314       315       316       317       318       319       320 
##  92.33669  99.42536 103.36351 101.78825 105.98894 102.83842 102.31333  99.68790 
##       321       322       323       324       325       326       327       328 
##  88.66108  89.18617  90.76143  88.13600  89.18617  80.78478  84.19785  78.42189 
##       329       330       331       332       333       334       335       336 
##  82.09750  79.20952  84.46039  79.99715  82.62259  78.15935  74.22120  77.89681 
##       337       338       339       340       341       342       343       344 
##  82.36004  82.36004  78.15935  80.25970  76.58409  75.00883  63.98201  72.90848 
##       345       346       347       348       349       350       351       352 
##  73.17103  79.20952  80.25970  78.68444  73.95866  76.32155  72.90848  75.53392 
##       353       354       355       356       357       358       359       360 
##  66.86999  70.54559  70.80814  70.02051  69.75796  68.44525  65.81981  51.37993 
##       361       362       363       364       365       366       367       368 
##  44.81635  46.91670  55.84317  52.69265  50.85485  55.31808  60.83149  68.18270 
##       369       370       371       372       373       374       375       376 
##  63.71947  65.81981  75.27137  61.88167  60.04386  71.59577  77.10918  67.65762 
##       377       378       379       380       381       382       383       384 
##  68.18270  74.74629  75.79646  82.88513  63.45692  61.61912  65.81981  61.88167 
##       385       386       387       388       389       390       391       392 
##  68.97033  81.57241  77.37172  67.65762  67.92016  55.31808  62.40675  52.69265 
##       393       394       395       396       397       398       399       400 
##  60.56895  66.60744  49.01704  63.98201  55.58063  61.61912  58.73115  58.20606 
##       401       402       403       404       405       406       407       408 
##  62.66930  66.08236  62.66930  62.66930  50.06722  54.79300  71.59577  62.14421 
##       409       410       411       412       413       414       415       416 
##  64.50710  65.29473  63.45692  72.12085  69.75796  63.71947  64.50710  69.23288 
##       417       418       419       420       421       422       423       424 
##  72.12085  82.62259  97.58755  74.48374  73.17103  68.97033  77.37172  85.77311 
##       425       426       427       428       429       430       431       432 
##  98.63773 109.13946 108.61437  61.35658  84.46039  86.29819  90.49889  76.58409 
##       433       434       435       436       437       438       439       440 
##  87.61091  88.92363  94.69958 101.00062 100.47553  98.90027  99.68790  84.19785 
##       441       442       443       444       445       446       447       448 
##  73.43357  77.37172  79.20952  80.78478  84.98548  73.17103  82.36004  85.24802 
##       449       450       451       452       453       454       455       456 
##  75.79646  76.05900  74.74629  75.53392  77.89681  83.41022  75.79646  76.84663 
##       457       458       459       460       461       462       463       464 
##  74.48374  79.73461  78.68444  82.09750  73.95866  77.10918  83.41022  88.92363 
##       465       466       467       468       469       470       471       472 
##  92.33669  92.59923  96.27484  99.68790  98.90027 104.93877 110.45218 112.81507 
##       473       474       475       476       477       478       479       480 
##  95.74975  86.29819  92.86178  95.22466  87.08582  87.87345  91.81160  83.41022 
##       481       482       483       484       485       486       487       488 
##  83.41022  84.98548  79.20952  87.87345  97.58755  98.90027  84.98548  81.83496 
##       489       490       491       492       493       494       495       496 
##  93.12432  77.37172  82.88513  80.25970  81.30987  86.82328  90.23634  82.09750 
##       497       498       499       500       501       502       503       504 
##  99.68790 105.72640 105.98894 111.23981  86.56074  85.24802  88.92363  84.46039 
##       505       506       507       508       509       510       511       512 
##  85.24802  81.30987  81.57241  76.32155  75.27137  77.89681  76.32155  82.09750 
##       513       514       515       516       517       518       519       520 
##  79.99715  83.67276  82.62259  93.12432  86.82328  90.76143  85.51056  78.15935 
##       521       522       523       524       525       526       527       528 
##  78.42189  73.69611  77.37172  74.22120  72.64594  76.58409  82.62259  83.14767 
##       529       530       531       532       533       534       535       536 
##  84.98548  75.27137  65.81981  60.56895  75.00883  65.03218  75.53392  78.94698 
##       537       538       539       540       541       542       543       544 
##  74.22120  72.90848  79.73461  77.63426  81.04733  73.95866  82.62259  84.98548 
##       545       546       547       548       549       550       551       552 
##  80.25970  60.56895  62.14421  71.07068  71.59577  62.66930  65.55727  69.75796 
##       553       554       555       556       557       558       559       560 
##  59.78132  56.89334  59.25623  63.98201  68.18270  75.27137  61.35658  70.54559 
##       561       562       563       564       565       566       567       568 
##  67.92016  72.90848  69.75796  79.47207  78.68444  87.61091  83.41022  93.12432 
##       569       570       571       572       573       574       575       576 
##  81.04733  76.58409  83.93530  80.52224  74.48374  82.88513  74.48374  78.42189 
##       577       578       579       580       581       582       583       584 
##  80.25970  81.30987  78.42189  84.46039  71.33322  67.39507  65.03218  69.23288 
##       585       586       587       588       589       590       591       592 
##  68.44525  74.74629  66.60744  76.84663  65.29473  72.90848  79.73461  83.93530 
##       593       594       595       596       597       598       599       600 
##  93.38686  96.53738  93.91195  89.18617  88.13600  87.61091  91.28652  80.25970 
##       601       602       603       604       605       606       607       608 
##  89.97380  82.36004  79.99715  81.57241  88.13600  91.02397  91.81160  97.32501 
##       609       610       611       612       613       614       615       616 
##  98.37518  92.59923  83.67276  88.66108  88.66108  93.12432 102.83842  85.51056 
##       617       618       619       620       621       622       623       624 
##  82.88513  84.72293  85.24802 100.73807  89.18617  88.92363  93.38686  91.54906 
##       625       626       627       628       629       630       631       632 
##  98.63773 104.67622 110.71472  85.51056  96.01229  94.43703  97.85010 103.10096 
##       633       634       635       636       637       638       639       640 
## 103.62605  83.41022  94.17449  99.16281 105.46385  92.86178  97.06247  91.28652 
##       641       642       643       644       645       646       647       648 
##  96.79992  79.20952  83.14767  74.22120  72.38340  83.14767  81.57241  89.97380 
##       649       650       651       652       653       654       655       656 
##  79.73461  84.72293  87.61091  73.17103  77.10918  79.20952  78.68444  78.15935 
##       657       658       659       660       661       662       663       664 
##  74.74629  84.46039  86.56074  75.53392  72.38340  75.27137  81.57241  88.92363 
##       665       666       667       668       669       670       671       672 
##  93.38686 102.31333 104.15114  94.96212  88.92363  87.34837  90.23634  92.86178 
##       673       674       675       676       677       678       679       680 
##  89.97380  89.71126  86.82328  78.94698  96.27484  92.07415  64.50710  63.45692 
##       681       682       683       684       685       686       687       688 
##  62.40675  65.55727  61.09404  47.96687  43.24109  49.54213  45.60398  49.54213 
##       689       690       691       692       693       694       695       696 
##  50.06722  48.75450  53.48028  56.36826  62.93184  72.12085  78.15935  59.78132 
##       697       698       699       700       701       702       703       704 
##  65.55727  62.14421  59.51878  63.98201  66.34490  61.61912  57.15589  62.40675 
##       705       706       707       708       709       710       711       712 
##  69.23288  65.81981  74.48374  90.76143  80.25970  91.81160  96.53738  94.17449 
##       713       714       715       716       717       718       719       720 
##  93.64941  84.19785  95.22466  92.33669  90.49889  93.64941  94.69958  88.66108 
##       721       722       723       724       725       726       727       728 
##  89.97380  73.43357  76.05900  72.90848  74.22120  76.58409  70.02051  75.53392 
##       729       730       731       732       733       734       735       736 
##  65.29473  72.90848  75.53392  67.13253  77.37172  77.37172  83.93530  82.88513 
##       737       738       739       740       741       742       743       744 
##  82.88513  77.63426  77.63426  81.83496  76.58409  59.51878  68.18270  67.39507 
##       745       746       747       748       749       750       751       752 
##  73.69611  67.65762  76.32155  79.73461  83.93530  99.95044 114.12778  81.57241 
##       753       754       755       756       757       758       759       760 
##  82.88513  85.51056  89.18617  81.57241  79.99715  70.54559  77.37172  73.69611 
##       761       762       763       764       765       766       767       768 
##  79.73461  80.25970  70.28305  75.00883  77.10918  73.17103  72.64594  74.74629 
##       769       770       771       772       773       774       775       776 
##  77.89681  77.89681  78.42189  84.19785  84.19785  77.89681  78.42189  73.95866 
##       777       778       779       780       781       782       783       784 
##  79.99715  83.67276  79.73461  96.79992  92.59923  81.57241  84.98548  74.74629 
##       785       786       787       788       789       790       791       792 
##  83.67276  88.13600  80.78478  78.42189  73.17103  76.58409  81.30987  80.78478 
##       793       794       795       796       797       798       799       800 
##  78.94698  84.72293  87.61091 115.44050  98.37518  90.49889  84.19785  90.76143 
##       801       802       803       804       805       806       807       808 
##  90.76143  88.92363  87.08582  76.84663  87.61091  82.09750  85.24802  84.72293 
##       809       810       811       812       813       814       815       816 
##  83.67276  84.19785  79.47207  78.94698  83.14767  88.66108  75.00883  87.61091 
##       817       818       819       820       821       822       823       824 
##  89.18617  88.92363  88.66108  73.69611  65.81981  63.19438  67.13253  64.76964 
##       825       826       827       828       829       830       831       832 
##  76.58409  76.05900  78.68444  86.56074  86.82328  89.18617  86.03565  83.93530 
##       833       834       835       836       837       838       839       840 
##  87.61091  79.73461  70.02051  81.04733  77.10918  74.74629  68.70779  67.92016 
##       841       842       843       844       845       846       847       848 
##  73.69611  66.34490  73.43357  71.33322  76.05900  68.44525  63.45692  66.60744 
##       849       850       851       852       853       854       855       856 
##  63.71947  56.89334  60.30641  64.24455  53.74282  44.29126  50.59230  51.64248 
##       857       858       859       860       861       862       863       864 
##  61.88167  54.00537  49.54213  61.61912  64.50710  66.08236  54.79300  67.92016 
##       865       866       867       868       869       870       871       872 
##  59.51878  69.75796  77.89681  77.37172  76.84663  76.32155  87.08582  89.18617 
##       873       874       875       876       877       878       879       880 
##  91.54906  76.84663  71.59577  78.94698  76.05900  76.05900  87.61091  75.53392 
##       881       882       883       884       885       886       887       888 
##  65.03218  68.44525  72.90848  71.07068  74.22120  76.58409  68.97033  71.33322 
##       889       890       891       892       893       894       895       896 
##  72.64594  74.48374  72.12085  70.02051  86.03565  93.64941  88.39854  94.69958 
##       897       898       899       900       901       902       903       904 
##  84.46039  86.82328  96.01229  72.64594  70.54559  68.70779  65.55727  73.17103 
##       905       906       907       908       909       910       911       912 
##  65.55727  69.75796  73.95866  75.79646  77.10918  79.99715  76.32155  82.09750 
##       913       914       915       916       917       918       919       920 
##  89.71126  93.12432  85.51056  81.57241  84.19785  77.37172  70.02051  75.53392 
##       921       922       923       924       925       926       927       928 
##  78.68444  69.49542  86.82328  74.48374  87.34837 106.25148  83.14767  78.94698 
##       929       930       931       932       933       934       935       936 
##  78.94698  82.09750  77.89681  93.64941  95.74975  95.48721  97.06247  85.24802 
##       937       938       939       940       941       942       943       944 
##  87.61091  79.47207  96.53738 102.05079  85.24802  86.29819  78.94698  72.64594 
##       945       946       947       948       949       950       951       952 
##  84.98548  95.74975 106.25148 109.92709  98.37518  98.63773  97.58755 101.26316 
##       953       954       955       956       957       958       959       960 
##  98.37518  90.76143  84.19785  91.54906  86.29819  92.59923  73.95866  81.83496 
##       961       962       963       964       965       966       967       968 
##  80.25970  79.99715  85.51056  87.34837  87.08582  79.99715  81.04733  73.17103 
##       969       970       971       972       973       974       975       976 
##  83.67276  82.62259  82.62259  91.54906  92.07415  88.13600 100.21299  90.76143 
##       977       978       979       980       981       982       983       984 
##  90.76143  87.61091  90.49889  93.38686  93.64941  86.29819  86.56074 100.47553 
##       985       986       987       988       989       990       991       992 
##  94.69958  96.27484 100.47553  93.64941  88.66108  90.49889  79.47207 103.36351 
##       993       994       995       996       997       998       999      1000 
## 108.87692  79.20952  77.89681  68.44525  79.73461  76.84663  74.48374  72.64594 
##      1001      1002      1003      1004      1005      1006      1007      1008 
##  76.32155  78.15935  70.02051  88.39854  82.36004  86.56074  75.53392  77.63426 
##      1009      1010      1011      1012      1013      1014      1015      1016 
##  72.90848  74.48374  76.32155  75.27137  54.26791  55.05554  67.65762  49.54213 
##      1017      1018      1019      1020      1021      1022      1023      1024 
##  43.50363  53.21774  63.45692  73.43357  61.09404  56.89334  54.53045  51.11739 
##      1025      1026      1027      1028      1029      1030      1031      1032 
##  64.24455  48.49196  48.75450  49.01704  62.93184  58.73115  63.71947  67.65762 
##      1033      1034      1035      1036      1037      1038      1039      1040 
##  72.90848  68.18270  64.50710  58.73115  65.29473  66.34490  63.45692  66.08236 
##      1041      1042      1043      1044      1045      1046      1047      1048 
##  69.75796  78.94698  81.30987  72.64594  67.13253  70.28305  85.51056  86.82328 
##      1049      1050      1051      1052      1053      1054      1055      1056 
##  79.73461  76.84663  78.15935  76.32155  75.27137  70.54559  75.27137  88.92363 
##      1057      1058      1059      1060      1061      1062      1063      1064 
##  96.53738  83.93530  70.80814  65.55727  66.86999  70.54559  65.55727  69.49542 
##      1065      1066      1067      1068      1069      1070      1071      1072 
##  76.32155  71.33322  73.43357  63.98201  66.86999  67.92016  69.75796  67.92016 
##      1073      1074      1075      1076      1077      1078      1079      1080 
##  71.33322  75.27137  83.67276  78.15935  78.15935  71.33322  74.48374  77.10918 
##      1081      1082      1083      1084      1085      1086      1087      1088 
##  89.18617  76.84663  77.63426  81.04733  85.51056  82.36004  95.74975 100.47553 
##      1089      1090      1091      1092      1093      1094      1095      1096 
## 104.93877 102.57588  89.44871  84.98548  78.15935  74.48374  73.17103  74.74629 
##      1097      1098      1099      1100      1101      1102      1103      1104 
##  85.77311  88.66108  91.54906  89.18617  86.29819  91.28652  85.24802  77.10918 
##      1105      1106      1107      1108      1109      1110      1111      1112 
##  83.93530  82.36004  89.71126  73.95866  77.10918  76.05900  72.12085  73.17103 
##      1113      1114      1115      1116      1117      1118      1119      1120 
##  79.99715  80.25970  76.58409  75.53392  77.89681  85.77311  86.03565  91.54906 
##      1121      1122      1123      1124      1125      1126      1127      1128 
##  93.64941  96.79992  94.96212  93.38686  81.30987  84.72293  81.57241  76.58409 
##      1129      1130      1131      1132      1133      1134      1135      1136 
##  84.19785  80.78478  84.46039  97.06247  90.76143  89.71126  81.57241  82.62259 
##      1137      1138      1139      1140      1141      1142      1143      1144 
##  83.41022  84.72293  91.81160  87.08582  99.95044  82.88513  95.22466  94.17449 
##      1145      1146      1147      1148      1149      1150      1151      1152 
##  88.66108  89.18617  88.39854  87.34837  87.87345  82.09750  81.30987  70.02051 
##      1153      1154      1155      1156      1157      1158      1159      1160 
##  80.78478  86.03565  98.90027 101.26316 110.18963  80.25970  85.24802  81.04733 
##      1161      1162      1163      1164      1165      1166      1167      1168 
##  86.82328  89.71126  91.81160  82.09750  82.09750  77.37172  80.25970  85.77311 
##      1169      1170      1171      1172      1173      1174      1175      1176 
##  84.46039  82.09750  89.44871  96.27484 103.10096 108.61437  77.10918  77.89681 
##      1177      1178      1179      1180      1181      1182      1183      1184 
##  88.92363  87.34837  83.14767  77.37172  78.94698  64.50710  68.70779  73.69611 
##      1185      1186      1187      1188      1189      1190      1191      1192 
##  89.71126  93.64941  77.10918  81.83496  85.24802  78.68444  73.43357  77.10918 
##      1193      1194      1195      1196      1197      1198      1199      1200 
##  69.75796  75.00883  66.86999  56.36826  57.94352  62.66930  60.83149  61.61912 
##      1201      1202      1203      1204      1205      1206      1207      1208 
##  66.08236  55.05554  61.88167  59.25623  58.46860  55.58063  64.50710  59.78132 
##      1209      1210      1211      1212      1213      1214      1215      1216 
##  58.46860  54.79300  49.54213  48.49196  55.31808  54.00537  62.14421  67.65762 
##      1217      1218      1219      1220      1221      1222      1223      1224 
##  65.81981  62.40675  67.13253  61.88167  56.10571  56.36826  63.45692  56.63080 
##      1225      1226      1227      1228      1229      1230      1231      1232 
##  53.74282  60.04386  54.00537  66.86999  67.92016  70.02051  73.69611  86.03565 
##      1233      1234      1235      1236      1237      1238      1239      1240 
##  96.53738  72.38340  79.73461  67.39507  69.49542  64.24455  70.54559  70.80814 
##      1241      1242      1243      1244      1245      1246      1247      1248 
##  80.52224  86.29819  87.34837  88.13600  92.86178  84.46039  81.57241  81.30987 
##      1249      1250      1251      1252      1253      1254      1255      1256 
##  98.90027  84.46039  93.91195  78.42189  76.84663  76.58409  74.48374  79.99715 
##      1257      1258      1259      1260      1261      1262      1263      1264 
##  82.09750  80.25970  69.23288  64.50710  74.48374  74.22120  79.73461  85.77311 
##      1265      1266      1267      1268      1269      1270      1271      1272 
##  78.94698  81.57241  79.73461  76.05900  73.95866  78.42189  92.86178  87.08582 
##      1273      1274      1275      1276      1277      1278      1279      1280 
##  91.81160 103.36351  94.43703 114.12778  89.97380  88.39854  87.08582  94.17449 
##      1281      1282      1283      1284      1285      1286      1287      1288 
##  89.71126  87.87345 102.83842 107.30166  77.63426  76.05900  90.49889  76.05900 
##      1289      1290      1291      1292      1293      1294      1295      1296 
##  83.93530  86.03565  82.62259  83.41022  73.69611  66.34490  77.10918  78.42189 
##      1297      1298      1299      1300      1301      1302      1303      1304 
##  81.83496  82.09750  69.23288  78.42189  81.57241  84.98548  85.77311  87.34837 
##      1305      1306      1307      1308      1309      1310      1311      1312 
##  87.34837  98.90027 101.00062 102.57588 100.73807 105.98894 108.35183  97.32501 
##      1313      1314      1315      1316      1317      1318      1319      1320 
## 105.72640  90.76143  76.05900  82.36004  77.37172  88.66108  84.98548  84.46039 
##      1321      1322      1323      1324      1325      1326      1327      1328 
##  73.17103  80.78478  88.13600  94.43703  82.09750 106.51403  90.49889  83.67276 
##      1329      1330      1331      1332      1333      1334      1335      1336 
##  84.19785  93.38686  98.90027 102.83842  99.68790 116.22813  88.39854  97.32501 
##      1337      1338      1339      1340      1341      1342      1343      1344 
##  92.33669  75.00883  77.10918  81.57241  81.30987  87.87345  72.38340  78.68444 
##      1345      1346      1347      1348      1349      1350      1351      1352 
##  77.89681  76.32155  82.88513  80.25970  86.56074  77.37172  75.27137  74.74629 
##      1353      1354      1355      1356      1357      1358      1359      1360 
##  74.74629  65.03218  65.81981  71.07068  75.53392  79.20952  79.99715  74.48374 
##      1361      1362      1363      1364      1365      1366 
##  74.74629  74.74629  82.88513  88.66108  80.25970  77.10918

The means

## The mean of the residuals is -6.454147e-15
## The mean of the fitted values is 79.28141

\(R^{2}\) squared et \(R^{2}_{a}\) adjusted

##  Le R2 est value est 0.242301
##  Le R2 adjusted value est 0.2417455

Modèle linear multiple \(\mathcal{M}_{2}\) avec les variables T12, Vx, N12 and max03v

On considére el modèle lineaire simple \(\mathcal{M}_{2}\) avec la variable explicative T12, Vx, N12 and max03v.

\[\begin{equation} (\mathcal{M}_{2}): max03= \beta_{0} + \beta_{1} T12 + \beta_{1} Vx + \beta_{1} N12 + \beta_{1} T12max03V + \epsilon_{2} \end{equation}\]

Résumé

Plot

Summary

## 
## Call:
## lm(formula = maxO3 ~ T12 + Vx + Ne12 + maxO3v, data = ozone)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -70.313  -9.129   0.935   9.953  58.950 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 32.76618    2.87129  11.412  < 2e-16 ***
## T12          0.70387    0.10074   6.987 4.38e-12 ***
## Vx           0.93921    0.13449   6.983 4.50e-12 ***
## Ne12        -2.55848    0.22418 -11.413  < 2e-16 ***
## maxO3v       0.59597    0.01701  35.046  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.68 on 1361 degrees of freedom
## Multiple R-squared:  0.6659, Adjusted R-squared:  0.6649 
## F-statistic: 678.1 on 4 and 1361 DF,  p-value: < 2.2e-16

Coefficients

## (Intercept)         T12          Vx        Ne12      maxO3v 
##  32.7661837   0.7038747   0.9392082  -2.5584780   0.5959748

Les estimations des coefficients sont \(\beta_0, \beta_1, \beta_2, \beta_3\) et \(\beta_4\) sont respectivement \(\beta_0=32.76618, \beta_1=0.70387\), \(\beta_2=0.93921, \beta_3=-2.55848\) et \(\beta_4=0.59597\). Le modele lineaire \(\mathcal{M}_{2}\) est:

\[y=32.76618+0.70387 \,\, T12 + 0.93921 \,\, Vx -2.55848 \,\, Ne12 +0.59597 \,\, maxO3v.\]

Residuals

#Le residuals sont:

residuals_multiple <- res_multiple$residuals
#residuals_multiple

Fitted Values

#Le fitted values sont:

fitted_multiple <- res_multiple$fitted
#fitted_multiple

The means

## The mean of the fitted values is 79.28141
## The mean of the residuals is 2.397328e-15

\(R^{2}\) squared et \(R^{2}_{a}\) adjusted

##  Le R2 est value est 0.6658794
##  Le R2 adjusted value est 0.6648975

Modèle lineaire avec tout les variables

On considere le modèle lineaire avec tout les variables explicatives

Resume

Summary

## 
## Call:
## lm(formula = maxO3 ~ ., data = ozone)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -66.664  -9.063   0.277   9.660  49.455 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  41.20014   11.31132   3.642 0.000280 ***
## T6           -1.54951    0.28029  -5.528 3.88e-08 ***
## T9            0.10141    0.43054   0.236 0.813825    
## T12           1.35109    0.40963   3.298 0.000998 ***
## T15           0.18992    0.42341   0.449 0.653831    
## T18           0.15683    0.33125   0.473 0.635972    
## Ne6          -0.09294    0.21773  -0.427 0.669545    
## Ne9          -0.69359    0.31252  -2.219 0.026632 *  
## Ne12         -0.84100    0.36079  -2.331 0.019900 *  
## Ne15         -0.38348    0.34556  -1.110 0.267311    
## Ne180       -15.79476   10.95285  -1.442 0.149516    
## Ne181       -13.17350   10.83916  -1.215 0.224441    
## Ne182       -12.00948   10.87340  -1.104 0.269581    
## Ne183       -10.84205   10.86677  -0.998 0.318592    
## Ne184       -12.95055   10.88617  -1.190 0.234400    
## Ne185       -11.82442   10.84382  -1.090 0.275719    
## Ne186       -13.48212   10.81210  -1.247 0.212634    
## Ne187       -13.23046   10.78884  -1.226 0.220297    
## Ne188       -13.92541   10.82302  -1.287 0.198439    
## Vx            0.59868    0.14277   4.193 2.93e-05 ***
## maxO3v        0.58786    0.01667  35.266  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.17 on 1345 degrees of freedom
## Multiple R-squared:  0.6909, Adjusted R-squared:  0.6863 
## F-statistic: 150.3 on 20 and 1345 DF,  p-value: < 2.2e-16
##  Le R2 adjusted value est 0.6863159

Analysis

\(\textbf{Resume Modèle}\) \(\mathcal{M}_{1}:\)

  1. Est-ce le modele \(\mathcal{M}_{1}\) vous semple-t-il adapte et \(\mathcal{M}_{2}\):

\(\textbf{Observation}:\) \(R^2\) augmente avec chaque prédicteur ajouté à un modèle. Comme \(R^2\) augmente toujours et ne diminue jamais, il peut sembler être un meilleur ajustement avec le plus de termes que vous ajoutez au modèle. Mais ce n’est pas toujours le meilleur choix.

  1. Est-ce qu’on valide a chaque fois le modele global ? les variables explicatives

Intervalles de Confiance

Considérer maintenant le modèle \(\mathrm{M}_2\). Calculer les intervalles de confiance pour chaque coefficient (créer une fonction si possible). Vous pouvez utiliser la fonction coef de la façon suivante pour récupérer directement les estimations des coefficients avec les statistiques et $df.residual pour récupérer directement les degrés de liberté nécéssaires dans le calcul des intervalles de confiance:

Coefficiets

##               Estimate Std. Error    t value      Pr(>|t|)
## (Intercept) 32.7661837 2.87128787  11.411668  7.164360e-29
## T12          0.7038747 0.10073849   6.987147  4.377991e-12
## Vx           0.9392082 0.13449333   6.983307  4.495141e-12
## Ne12        -2.5584780 0.22417730 -11.412743  7.083953e-29
## maxO3v       0.5959748 0.01700557  35.045870 2.668762e-192

Degres de liberte

## Les degres de liberte 1361

Intervalles de Confiance avec confit

##                  2.5 %     97.5 %
## (Intercept) 27.1335537 38.3988136
## T12          0.5062551  0.9014943
## Vx           0.6753715  1.2030449
## Ne12        -2.9982486 -2.1187075
## maxO3v       0.5626149  0.6293348

Intervalles de Confiance a la main

Cette fonction calcule l’intervalle de confiance

#Hacer una funcion que calcule los intervalos de confianza.
#the estimae +-std.error *qt(0.96,degrefreedom )

# With alpha the significance level


conf_int <- function(model, alpha=0.05) {
  # Extract the coefficients and their standard errors from the model summary
  coef_summary <- summary(model)$coefficients
  coef_values <- coef_summary[, 1]
  coef_se <- coef_summary[, 2]
  
  # Compute the t-values for the given confidence level
  t_values <- qt(1 - alpha / 2, df = model$df.residual)
  
  # Compute the confidence intervals for each coefficient
  lower_bounds <- coef_values - t_values * coef_se
  upper_bounds <- coef_values + t_values * coef_se
  
  # Combine the lower and upper bounds into a matrix and add column names
  conf_int <- cbind(lower_bounds, upper_bounds)
  colnames(conf_int) <- c("Lower Bound", "Upper Bound")
  
  # Return the confidence intervals
  return(conf_int)
}


conf_int(res_multiple)
##             Lower Bound Upper Bound
## (Intercept)  27.1335537  38.3988136
## T12           0.5062551   0.9014943
## Vx            0.6753715   1.2030449
## Ne12         -2.9982486  -2.1187075
## maxO3v        0.5626149   0.6293348

Cette focntion ici, c’est l’intervalle de confiance avec R

IC<-confint(res_multiple,level = 0.95)
IC
##                  2.5 %     97.5 %
## (Intercept) 27.1335537 38.3988136
## T12          0.5062551  0.9014943
## Vx           0.6753715  1.2030449
## Ne12        -2.9982486 -2.1187075
## maxO3v       0.5626149  0.6293348

L’ellipse de confiance de 95%

Dessinez les ellipses de confiance (à 95%) des paramètres \(\beta\) considérés deux à deux et sur chaque ellipse le rectangle de confiance construit à partir de chaque intervalle de confiance pris séparement.

Propriété de sans biais des estimateurs de coefficients \(\beta_{j}\)

Vérification de la propriété de sans biais des estimateurs de coefficients \(\beta_j\) d’un modèle linéaire et calcul des taux de couverture

Nous allons tester dans cette section que les estimateurs de coefficients \(\beta\) d’un modèle linéaire sont sans biais. En pratique, on ne peut jamais réaliser cela. On va simuler cela lors du TP. On considère pour cela que la table ozone est notre population d’étude, on connait donc les vraies valeurs des coefficients \(\beta\) (cela n’est jamais possible en pratique car on n’a jamais la population d’étude). Dans cette population, nous allons tirer des échantillons aléatoires de taille \(n=200\) et on va s’interesser à l’estimation du coefficient de la variable T12 qui est égal à:

Echantionage

Le valeur de T12

## Le vrai valeur de T12 est: 0.7038747

Echantionage avec \(n=200\) observations

##   [1] 1135  791  905 1341  807 1246 1311  292 1250  297  860  605  637 1063 1261
##  [16]  165  619 1057   83  866  277 1233 1023   76 1118 1054 1241  946 1199  374
##  [31]  323  115  850  608  682  938 1120  397 1172  989  392  593  744  243  106
##  [46]   11  625  386  403  461  141   31 1139   94   16  178  177  524  924  204
##  [61] 1338  373  646  384 1146  315  259  494 1072 1124 1016 1132   10  170  402
##  [76] 1345  108    8  626  261  541  326 1098  282 1307 1243  696  667  990 1143
##  [91]  452  856  622 1304 1060 1079 1264  891 1034  665 1129  793  463 1204  278
## [106]  241   24  679   37  686  566   19  378  549   48 1212  464  393 1163  670
## [121] 1213  311  189   38 1108  319 1257  846  120  712  441 1223  599   72  714
## [136]  677   81 1271  134  424  756    6 1152  879  668   49  193  709  459  303
## [151] 1328  898  190  191  446  119 1083  817   61 1295 1335  930  950  698  983
## [166]  758  993  947  690  251  560  643  545 1278  162  576  168  788   78 1267
## [181]  445  995   95  379  221 1280  620  448  242  927  814  926  407  229  785
## [196]  699 1047  218  648   79

Valeur de T12

## 
## Call:
## lm(formula = maxO3 ~ T12 + Vx + Ne12 + maxO3v, data = ozone.s)
## 
## Coefficients:
## (Intercept)          T12           Vx         Ne12       maxO3v  
##     40.4068       0.4622       1.3314      -2.6449       0.5804
##       T12 
## 0.4621573

Question 1

Considérer 10000 échantillons comme ci-dessus et calculer pour chaque échantillon l’estimation du coefficient de T12. Mettez ces estimations dans un vecteur de taille 10000.

\(\textbf{Answer:}\)

Ici nous montrons juste la première ligne du \(10000\) et \(20000\) echantillons.

10000 Echantillon avec \(n=200\) observations

nsim <- 10000
echantillon <- numeric(10000)
confinterval <- c()

for (i in 1:10000)
{
#sample with 200 observations
N <- nrow(ozone)
n <- 200
s <- sample(N,n)

ozone.s <- ozone[s,]
ozone.s

res2.s <- lm(maxO3 ~T12 + Vx + Ne12 +maxO3v, data=ozone.s)
rescof <- res2.s$coefficients[2]

## Interval de confiance
confinterval <- append(confinterval,confint(res2.s,level=0.95)[2,])


echantillon[i] <- rescof
}

head(echantillon)
## [1] 0.5049869 0.3758093 0.7963478 0.9651165 0.8457399 0.9183359
#echantillon

20000 Echantillon avec \(n=200\) observations

## [1] 0.7562587 0.7299679 0.4765873 0.5390277 0.5694816 1.0743406

10000 Echantillon avec \(n=400\) observations

## [1] 0.6902926 0.7332076 0.8283719 0.9676027 0.4767603 0.8830131

Function que depend de m nombre de simulation et r nombre des observations

## n is the number of simulations:

echantillonvector <- function(m,r){
  
 nsim <- m
 echantillon <- numeric(m)
for (i in 1:m)
{
#sample with 200 observations
N <- nrow(ozone)
n <- r
s <- sample(N,n)

ozone.s <- ozone[s,]
ozone.s

res2.s <- lm(maxO3 ~T12 + Vx + Ne12 +maxO3v, data=ozone.s)
rescof <- res2.s$coefficients[2]

echantillon[i] <- rescof
}
return(echantillon)
}

echantillon3 <- echantillonvector(10000,400)
head(echantillon3)
## [1] 1.0135206 0.8473761 0.7595781 0.6837330 0.6804568 0.7997701

Question 2

Calculer la moyenne de ces 10000 estimations et comparer avec la vrai valeur du coeffcient. Si ces deux valeurs sont très proches, on peut décider que l’estimateur est sans biais. Pour nous aider, on peut calculer le biais relatif de \(\hat{\beta}\) :

\[ RB(\hat{\beta})=\frac{\frac{1}{10000} \sum_{i=1}^{10000} \hat{\beta}^{(i)}-\beta}{\beta}, \]\(\hat{\beta}^{(i)}\) est une estimation du paramètre \(\beta\) à partir de ième échantillon et \(\beta\) est la vraie valeur du paramètre.

On peut aussi représenter graphiquement la moyenne des estimations (voir figure plus bas). Attention, le calcul du biais relatif nous dit que la courbe est assez proche de la ligne en rouge qui est le vrai beta.

\(\textbf{Answer:}\)

a). La moyenne de ces 10000 et 20000 estimations:

Le valeur de T12

## Le vrai valeur de T12

cat("Le vrai valuer del coefficient correspondant a T12 est: ", T12)
## Le vrai valuer del coefficient correspondant a T12 est:  0.7038747

Le means

#10000
mean1 <- mean(echantillon)

cat("Le moyenne de 10000 echantillonage est ", mean1)
## Le moyenne de 10000 echantillonage est  0.6973428
## 20000
mean2 <- mean(echantillon2)

cat("Le moyenne de 20000  est ", mean2)
## Le moyenne de 20000  est  0.6974637
## 10000 avec n=400

mean3 <- mean(echantillon3)

cat("Le moyenne de 20000 echantillonage avec n=400 pbservations est ", mean3)
## Le moyenne de 20000 echantillonage avec n=400 pbservations est  0.7040497

\(\textbf{Conclusion}\) Comme le vrai valeur et les valeurs de 10000 et 20000 echantionage sont tres proche, on peut concluire que le estimateur est sans biais.

Le bias avec la focntion de R

b). Le biais relatif de \(\hat{\beta}\) est different chaque fois:

#biais del echantillon 10000
bi1 <- bias(echantillon, T12)
cat("Le bias de 10000 echantillonage avec n=200 avec R:",bi1 )
## Le bias de 10000 echantillonage avec n=200 avec R: -0.00653193
#biais del echantillon 20000
bi2 <- bias(echantillon2, T12)
cat("Le bias de 20000 echantillonage avec n=200 avec R:",bi2 )
## Le bias de 20000 echantillonage avec n=200 avec R: -0.006410988
#biais del echantillon 20000 avec n=400 observations 

bi2 <- bias(echantillon3, T12)
cat("Le bias de 10000 echantillonage avec n=400 observations avec R:",bi2 )
## Le bias de 10000 echantillonage avec n=400 observations avec R: 0.0001750234

Le bias a la main

#EL VALOR MENOS EL DE ECHANTILLON 
bia1 <- mean(echantillon) - T12
cat("Le bias de 10000 echantillonage avec n=200 est", bia1)
## Le bias de 10000 echantillonage avec n=200 est -0.00653193
bia2 <- mean(echantillon2) - T12
cat("Le bias de 20000 echantillonage avec n=200", bia2)
## Le bias de 20000 echantillonage avec n=200 -0.006410988
bia3 <- mean(echantillon3) - T12
cat("Le bias de 10000 echantillonage avec n=400 observations est", bia3)
## Le bias de 10000 echantillonage avec n=400 observations est 0.0001750234

Graphe

c). Graphe moyenne en terms de nombre de simulations

# 10000 nombre de simulations avec n=200
plot( cumsum(echantillon)/(1:10000), type="l" ,xlab = "Nombre Simulations ", ylab = " Moyennes des estimateurs de beta de T12" )
abline(h=T12, col="red")

# 20000 nombre de simulations avec n=200
plot( cumsum(echantillon2)/(1:20000), type="l" ,xlab = "Nombre Simulations ", ylab = " Moyennes des estimateurs de beta de T12" )
abline(h=T12, col="red")

# 10000 nombre de simulations avec n=400
plot( cumsum(echantillon3)/(1:10000), type="l" ,xlab = "Nombre Simulations ", ylab = " Moyennes des estimateurs de beta de T12" )
abline(h=T12, col="red")

Question 3

  1. On veut calculer maintenant le taux de couverture des intervalles de confiance de \(\beta_{T 12}\). Il faut donc, pour chanque échantillon, regarder si \(\beta_{T 12}\) appartient à l’intervalle de confiance construit à partir de cet échantillon et obtenir ensuite le taux de couverture (nombre d’échantillons qui contiennent \(\beta_{T 12}\) divisé par 10000). Inspirez vous du point précédent pour calculer ce taux de couverture. Le mieux est de faire les deux calculs sur les mêmes échantillons (biais et taux de couverture).

\(\textbf{Answer:}\)

beta <- T12

#echantillon
vecteurinter <- c()

#vecteurinter <- append(vecteurinter, confinterval[1] > beta && confinterval[2]>beta)
for (i in 1:10000){
  k=i-1 
  vecteurinter <- append(vecteurinter, isTRUE(beta>confinterval[i+k] && beta<confinterval[i+k+1]))
  }

taux <- mean(vecteurinter)
cat("Le taux de couverture des intervalles de confiance de beta_{T 12} est:", taux)
## Le taux de couverture des intervalles de confiance de beta_{T 12} est: 0.9755

Bootstrap

Le modèle utilisé est \(Y=X \beta+\varepsilon\)\(\varepsilon\) est une variable aléatoire de loi \(F\) inconnue et d’espérance nulle. L’idée du bootstrap est d’estimer cette loi par ré-échantillonnage.

On considere le modele suivante:

\[ maxo3 = \beta_{0} + \beta_{1} T12 + \beta_{2} Vx + \beta_{3} Ne12\]

## 
## Call:
## lm(formula = maxO3 ~ T12 + Vx + Ne12, data = ozoneb)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -75.461 -11.868   0.175  14.667  68.954 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  67.4299     3.7166  18.143  < 2e-16 ***
## T12           1.6163     0.1342  12.046  < 2e-16 ***
## Vx            1.3979     0.1846   7.574 6.63e-14 ***
## Ne12         -3.4475     0.3071 -11.226  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 21.62 on 1362 degrees of freedom
## Multiple R-squared:  0.3644, Adjusted R-squared:  0.363 
## F-statistic: 260.2 on 3 and 1362 DF,  p-value: < 2.2e-16

Les residus estimés

On calcule les residus estimes \(\hat{\epsilon} = \hat{Y} -Y\) et ajustements \(\hat{Y}\).

res<-residuals(modele3)
y_chapeau <-predict(modele3)
COEFF <-matrix(0, ncol = 4,nrow = 10000)
colnames(COEFF) <-names(coef(modele3))
ozone.boot<-ozoneb

On applique la methode de bootstrap avec 10000 (\(dim(COEF)\)) echantillons bootstrapes:

for (i in 1:nrow(COEFF)){
Regetoile <- sample(res,length(res),replace=T)
mod_etoile<-y_chapeau + Regetoile
ozone.boot[,"T12"] <-mod_etoile
modele3boot<-lm(formula(modele3),data = ozone.boot)
COEFF[i,] <-coef(modele3boot) # On obtient une matrice de 1000 coefficients estimés
}

Confidence Interval

Nous avons obtenu un matrice de 10000 coefficients estimés (COEF) et nous choisir les quantiles empiriques a \(2.5\%\) et \(97.5\%\).

##       (Intercept)        T12       Vx      Ne12
## 2.5%     92.48188 0.04563539 1.231091 -4.977863
## 97.5%   103.37990 0.14635306 1.394780 -4.437713

Un IC de \(95\%\) pour le coefficient T12 est donc donné pas \([0.045,0.146]\).

Histogram

Cette histogramme semble indiquer que la loi est proche d’une loi normale.

hist(COEFF[,"T12"],main="",xlab="Coefficient de T12")